APPLICATIONS OF HIGH-POWER ULTRAFAST LASERS DRIVEN X-RAY SOURCES

Jean Claude Kieffer INRS-EMT 1650 blvd L. Boulet, Varennes, Qc, Canada

PART II: FROM IMAGE TO MACHINE:

illustration through an attempt to build an industrial solution

- Building a laser-based X-ray machine
- The industrial perspective with K-alpha X-ray sources
- The industrial perspective with LWFA-based X-ray sources
- To conclude

Building a machine

KIEFFER-2023

• Can we do a new product?

• How can it be manufactured ?

• Does it work in its intended environment?

• How will it be financed, marketed and distributed, and compete in the marketplace?

The SRL metric includes TRL, IRL, MRL, CRL

Technology, Integration, Manufacturing & commercialization readiness levels

THE INDUSTRIAL PERSPECTIVES WITH K-ALPHA X-RAY SOURCES

Is there a future for a laser-based X-rays?

UP TO 1mW (in 2π) of 17keV X-RAYS PRODUCED (up to 60μ J/shot)

2002: Conceptual Design of a K-alpha X-ray machine

NEED 100mW OF X-RAYS FOR A CLINICAL SYSTEM WITHOUT PHASE IMAGING

In 2011, the required laser technology is not existing

10s

d=3μm, τ=20fs, λ=0.8μm

5

100000

repetition rate (s^{-1})

100

1000

10000

Facing a valley of death in 2011

- 1989 2011:
- High Benefit demonstrated
- But laser technology had to be developed **TRL=3**
 - 2011: NO GO: 1st valley of death
 - No appropriate local industrial ecosystem
 - Development costs too high
 - Development time scale too long

THE INDUSTRIAL PERSPECTIVES WITH LWFA-BASED X-RAY SOURCES

2015: Our main goal

- ✓ Help to deliver innovative solutions for the production of globally sustainable Food
- ✓ From concept to commercialisation
- ✓ Going inside the farm

Is there a future for a laser-based X-rays?

Building an industrial solution

- 2009 2011:
- Assess a new laser technology
- Assess a new physics concept (LWFA)
- Assess imaging potential
 - 2011 2018:
 - FEASIBILITY demonstration
 - DESIGN of a functional system
 - Discussion with end users
 - Define integration levels

Defining scaling, feasibility

preliminary manufacturing readiness

2020 – 2022: Testing reliability & sustainable operating for
3D phase contrast tomography of complex objects
▶ 54 000 consecutive shots/day @ 2.5Hz

of high-power laser system optics

S. Fourmaux, J.C. Kieffer

Prepare integration engineering

- Integrate AI to control the machine (alignements, stability, safety ...)
- Integrate AI for imaging optimization

Where are we today

To conclude

X-ray phase contrast imaging start to be widely used

- Tomography of biological tissues, Nature Med. 2, 473 (1996)
- Biomedical applications, Phys. Med. Biol.49, 3573 (2004)
- Mammography, Proc. Nat. Acad. Sci. USA, 109, 18290 (2012), Radiology, 215, 286 (2000) J. Phys. D, 46, 494007 (2013)
- Material science, Materials, 5, 937 (2012), Int. J. Nanotech., 3, 280 (2006)
- Plasmas diagnostics and shocks experiments, Rev. Sci. Instrum. 81, 10E520 (2010), Rev. Sci. Instrum., 83, 073903 (2012)
- High resolution microscopy, Opt. Express 18, 15998 (2010)
- Paleontology, Appl. Phys. Lett. 75, 2912 (1999), Proc. Nat. Acad. Sci. USA 106, 5224 (2009)
- Plant and soil science, Plant Soil, 320, 1 (2009), J. Exp. Botany, 58, 2513 (2007)
- Non-destructive sensing
- Inertial Confinement Fusion, Opt. Express, 28, 13978 (2020)

• Can we do a new product?

• How can it be manufactured ?

• Does it work in its intended environment?

• How will it be financed, marketed and distributed, and compete in the marketplace?

Building

The winning proposition is thus: Let's row with all our strength against the tide before it's too late

- C'est finalement la proposition A "Ramons de toutes nos forces à contre-courant avant qu'il ne soit trop tard" qui l'emporte par 4 voix contre 2 et 1 abstention.

Me

year

A fantastic possibility with LWFA-based X-ray source

KIEFFER-2023

- Financial Engineering to develop a prototype
 - > Fast positioning
 - > Large cost integrating industrialization aspects
- Industrial engineering
 - > The technology Transfer model
 - > The JV model (industrial actors)
- Market positioning
 - A machine is a compromise between complexity and efficiency at THE LOWEST COST

THANK YOU

